
Plasma heating and ultrafast semiconductor laser modulation

through a terahertz heating field

Jianzhong Li* and C. Z. Ning t

NASA Ames Research Center, M/S N229-1, Moffett Field, CA94035-1000

(May 24, 2000)

Abstract

Electron-hole plasma heating and ultrafast modulation in a semiconductor

laser under a terahertz electrical field are investigated using a set of hydrody-

namic equations derived from the semiconductor Bloch equations. The self-

consistent treatment of lasing and heating processes leads to the prediction of

a strong saturation and degradation of modulation depth even at moderate

terahertz field intensity. This saturation places a severe limit to bandwidth

achievable with such scheme in ultrafast modulation. Strategies for increasing

modulation depth are discussed.
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I. INTRODUCTION

As demand keeps increasing for faster (lata transfer rate in to(lav's broa(lban(t telecon>

munication systems, conventional current injection modulation scheme on semiconductor

diode laser and passive modulation schemes, such as those using electro-optic and acoustic-

optic effects, are stretched to their limits. _ As a result, both multiplexing technologies anti

alternative modulation schemes into the terahertz (THz) regime are under fervent pursuit.

Direct optical modulation of the transmitter laser is distinctively advantageous over other

passive schemes as the telecommunication industry is moving toward an all-optical network-

ing future in order to eliminate the electronic bottleneck. One of such alternative direct

modulation schemes is through a heating electrical field. 2-_

In such a modulation scheme for quantum well lasers, a high frequency electrical field

(HFF) 2'3 or a terahertz field (THF) 4,5 is applied to the laser structure such that the field

polarization is in the plane of quantum well layers. The applied field accelerates electron-

hole plasma and the acquired kinetic energy is t_en converted to thermal energy through

various scatterings to heat the plasma. For a time-dependent field, the plasma tempera-

ture is expected to change, following the time-dependence of the applied field. Since it is

well-known that optical gain is a sensitive function of the electron-hole plasma (EHP) tem-

perature, the alternating plasma temperature will lead to an alternating optical gain, thus

to a modulated laser output. In contrast to the conventional current injection modulation,

where the bandwidth 6, faaB, is limited by interband recombination carrier lifetime rc and

density-induced differential gain OG/ON, modulation through a THz field should not expe-

rience this speed bottleneck, since plasma heating is an intraban(l process which occur on

picosecond time scale. The plasma density is almost constant on such a fast time scale, so

that slow recombination is no longer an issue in this scheme. This is tile basic idea behind

t.he ultrafast laser mo_lulation through a high frequency heating field.

Tile basic ph(,nom(,na ()f this mo(ltl[ation s(:herne haw' 1)_,(,n (liscuss_,_l in several previous

t)al)ers 2,a'' using siml)litie(l mo(h'Is. [n t,hose al)pr()aches , [inearizati(m of the _)pti('al gaff, all a



given temperature is made. The self-consist,rotcoupling betweenbLsing aml plasnm heating

processes is not fully considered. One obvious prediction of such a theory, though not

explicitly emphasized in those papers, is that the modulation depth increases monotonously

as a function of the THF/HFF amplitude. One is led to believe that t_he desired depth of

modulation can always be achieved through an increase of the amplitude of the heating field.

Since modulation depth is an important parameter for any practical implementation of this

scheme, it is important to look at this issue more closely to lind out if and to what degree

the prediction of a simplified linear theory is valid.

In this paper, we attempt to overcome these shortcomings of the linear theory and to

address the two-way coupling between lasing and heating processes. While ett:ects of plasma

heating on lasing process has been addressed, the reverse process, namely the effect of las-

ing on heating has not been adequately studied. Our starting point is the well-established

semiconductor Bloch equations (SBEs) that describe microscopically the coupling between

plasma distribution and optical polarization induced by the laser field in the active semicon-

ductors. We derive a set of equations for moments of up to second order from the SBEs after

adiabatically eliminating the medium polarization. This set of moment equations consists of

energy, momentum, and carrier density. Their self-consistent coupling and the microscopic

gain are included automatically.

This paper is organized as follows: In the next section, we will derive the set of mo-

ment equations from the SBEs and review the basic assumptions we make in the process of

derivation. In the third section, main results of our numerical simulation of these moment

equations will be presented. Finally, the paper is concluded in the fourth section.

II. HYDRODYNAMIC MODEL: THE MOMENT-EQUATION METHOD

The physical system we are dealing with is a uniform EHP in a semicondu(:tor quantum

well interacting with a sitigh'-mo(h, laser fid(l by stinmlate(l omissiml and absorption, which

is ('()nv('niently (h's(:riln,,l by the two-band s,mlic()n,htctor 13h)ch equations. 7 0 The m()difiod
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SBEslO12with an in-plane terahertz fiel_Iin the direction of:i:, FTn_(t)=Frn_(t):£:, are used

as our starting point to tlerive the Ino[n(,lif, equations and listed below,

0 r'Frn:(t) . V

(2.3)

where ne,h(-t-/_) is the nonequilibrium distribution function for electrons and holes with

wavevector +/_, respectively. The sign !_ means the imaginary part of the complex quantity

within the ensuing braces and the superscript symbol * means complex conjugate. The f2k

is the renormalized Rabi frequency and defined through

h_g - d_,,(k)A + _ V-k,_F_pfi, (2.4)

fi,#fi

Denoted by A and pfi are the slowly-varying envelop functions of the laser field,

E(t)=A exp(iw¢)+c.c., and interband optical polarization, P_(t)=p_ exp(iwtt). For brevity,

most notation of the time dependence has been dropped. As usual, e is the absolute value

of electron charge, h is the Planck's constant, 1_- is the Fourier component of the screened

Coulomb interaction between an electron and a hole, dc_(/_) is the interband optical dipole

matrix element between an electron state, lc/_), and a hole state, Iv-/_}, ee,h(/_) is the carrier

energy renormalized by the screened Coulomb interaction, h.a,'t is the photon energy of the

laser field, and E_ is the bandgap energy of the semiconductor gain medium. Major incoher-

ent scattering processes, such as carrier-carrier and carrier-LO phonon collisions, are lumped

in the terms labeled by subscript inc and treated in the second-order Born approximation, ta,o

Last but not least, other contributions not inchtde_l here will be added empirically to the

moment equations, as appeared in Eqs. (2.7-2.9). s Before _Mving int_) further ch'wdopnlent

of the above equations, it. is helpfltl to cliscuss our treallm'nt of the st:attt,ring processes. [n
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this paper, temporal correlations are assumedto be instantaneousfor the statistical ew)hL-

tion of tile EHP. In dm semMassicalpicture, by neglectingmemory effect, the incoherent

scattering terms in the modified SBEsare expressedin terms of local carrier distributions,

2Ot in_ = _ Sk'{W_(k, _;')n_(k')[I- n_(k)] -W_(k',k)n_(k)[I n_(k')]} (2.5)

Op l 2 -Ot ,i_ = _ -_ [_I/),(/_, k')pg,- Wp(/_',/_)p_] , (2.6)
k'

where a=e,h, shorthands for electrons and holes, S is the active area of the QW. The

Boltzmann scattering matrices W_(k,/_') for electrons and holes and the scattering matri-

ces rWp(_:,/_') take into account of carrier-carrier and earrier-phonon scattering processes

additively (see Ref. 14 for detail).

It is computationally too expensive and very often unnecessary to solve the above k-

resolved equations to describe a laser. Rather a set of moment equations is simpler and

often used. This has been done for lasers without the heating field 15-1s, where the equation

for the first-order moment, the momentum, was not necessary. Formally it is straightforward

to write down equations for the various moments. For the first three moments, we have the

following equations (see Ref. 19 for a general approach):

dN 4 { *}at - _ E_-_ _P_ [A] 2 + _ - B-_N_, -' %_N (2.7)

, -- • (2.s)at + eNFTH_(t) = s4F4hk_9 { ;:p;_} IAI2 + dt _a

+ _ _ B_zzNp _ %_P_
dt c- LO w a

+ eP-_Fr"'(t) = -a _ " + ¢_ft (2.9)dt ma "

dt c- LO

where

,' is the qlmntum well width, an,1 m,. =m,,r,4_/( m,,, + mh) is the reduced mass. The !)-

component of the inorllonturn _, has Ilo dyn;mlica[ rel_wance in our case aim tlltis beotl
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h'ft out so P,, stands for the ]:-component. The upper/lower sign in Eqs. (2.8,2.9) is fi_r

electrons and holes, respectively. Uniformity, or charge neutrality, of tile system requires

Ne--,&_/,=N..Iinj iS in.jection current with quantum el_iciency r/. Drtails in carrier capture

are not considered, but we assume that tile capture process occurs insta_!taneously and pair-

wise for electrons and holes. Energy gain per pair is intuitively taken as the bandgap offset

_.5_g between barrier and well material, in addition to the average energy E_/N per pair

injected into the EHP.

It is worth noting that other than the introduction of those empirical terms accounting

for carrier generation and recombination, no assumption has been made about the distri-

bution functions up to this point. The collision terms, d{P_, Eo}/dtl=a, for electron-hole

scattering, and d{P,, E_}/dt[__Lo, for carrier-LO phonon scattering, are treated in the Born

approximation. _a,9 Their corresponding expressions can be easily obtained by multiplying

hk_ or h2k2/(2rn_) to the scattering terms and then integrating over/_. For example,

(2.11)

It is important to point out that the above set of equations is not closed yet. First,

the distribution functions appear in the collision terms, Eqs. (2.5,2.6). Assumption has to

be made about the type and nature of these functions so that' those collision terms can be

evaluated. Second, the k-resolved polarization functions appear in the moment equations,

gqs. (2.7-2.9), which is an additional coupling that is not found in 'the typical moment

equation treatment of electronic transport problems. This is the well-recognized truncation

problem.

Our way of truncating this hierarchy relies on the time-scale argument fi)r the problem

we deal with here. We note that the fastest time scah' is the carrier-carrier scatterings

whi('h comph, te aroun(l 50--_100 f_ at tile level of lasing (hmsities. The next fastest time

scah, is that of the carrier-phonon scatt(,rings, which is in th(, (ntlm of a felo hu'ruh'ed f.s. For

the t('rahertz [i('l(I we ('onsidm hrrr, t.hr period is [arg('r that [ho I)honon scattering timr.

Si,u'e our main intrrest in this paper is on thr lerahertz heating and much slowrr btsing
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processes,wecan saMy assumethat the carrier-carrier scattering processeshaveresulted in

quasi-steadydistributions for electronsand holes,or quasiequilibrium. This leads in general

to the so-called drifted Fermi-Dirac distribution:

rG(/_) f(0)(/_ '_D ,= (2.12)

with h/_ ('_) = hk(D_)i • being the drift momentum of electrons/holes due to the applied

THF/HHF in the _ direction. And fl = (koT) -1, kB is the Boltzmann constant, T is

the plasma temperature, e_,(k) is the unrenormalized carrier energy, and >,_ is the chemi-

cal potential which is determined independently for electrons and holes from their density

and temperature. 8 In doing so, the active semiconductor QW medium is characterized by

plasma density, temperature, and the drift momenta of electrons and holes, respectively.

Here we have assumed that the plasma is thermalized by the subpicosecond incoherent

scatterings such that no temperature difference exists between electrons and holes (see the

Appendix). The assumption about the distribution functions cut off the hierarchy arising

from the scattering terms. The same time scale argument also helps cut off the hierarchy

due to polarization, since distribution thermalization and polarization relaxation are the

results of the same carrier scatterings. This leads to a typical adiabatic elimination of the

polarization. After defining p_ = eogf, A and making a relaxation time approximation for

the interband polarization scattering term in Eq. (2.3),

0_1 _ --_/PPf¢ , (2.13)
I.J_ t irLc

the k-resolved optical susceptibility is written as

; f 0) _ :]4_(_) [£ ( ) + (_) I
= x (2.14)

x; h_, - e_(_) - _h(_) - E,, + ih_ 1 - q,(;.)

where the term 1/(l - q_(/_)) is the so-called Coulomb enhancement factor and its explicit

expression can In, foun(I in Hauq and h'och, s or in Chow and Koch .'° for the diagonal (lecay, or

an improve(l version in Ning et. al. l_' in('lu(ling th(' non-diagonal scatterings. The relaxati_m

rate ?v is assumed to be k-independeztt. Ttu' rnany-t)ody effects is treated in the framework
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of tile Hatree-Fock theory with dynamic screeningmodeled by the single plasmon pole

approximation,r'8 It is worth noting the fo[lowings: (t) As discussed in the Introduction,

subpicosecond incoherent scatterings allow us to neglect the coherent effects of the TI-[z field

on the polarization; (2) drift-related correction to the susceptibility has been omitted for the

drift kinetic energy is estimated two orders of magnitude smaller than the chemical potential

at a typical THF of a few KV/cra; (3) No spectral hole burning introduced saturation effects

are considered in the optical susceptibility because the laser field intensity involved in our

simulation is much smaller than the required intensity, estimated at 58 MW/cm2. 2t

If we substitute Eqs. (2.14) and (2.12) into the moment equations, we have a closed set of

equations for the first three moments. This set, coupled with Maxwell equation, will permit

a self-consistent description of lasing and heating due to the terahertz field. However, further

simplification can be made to eliminate the momentum equations. First, we point out that

in gq. (:2.8) the momentum change due to stimulated emission can be ignored in comparison

with those due to terahertz field and to carrier-carrier and carrier-phonon scatterings. The

momentum equation is then reduced to

de + eNFruz(t) = -% _, q: %hrnr (2.15)
rna

where _,_ is the lumped carrier momentum relaxation rate due to LO phonon scatterings,

spontaneous emissions, and non-radiative recombinations, %/, is the interband electron-hole

scattering rate, which is given in the Appendix. Manipulation of this equation by Fourier

transformation produces the following results,

P_(co) =-Ph(w) = eNFvu:(W) (2.t6)
7t q-Teh -- iw

Since the THz frequency co is an order of magnitude smaller than 3t + %h 22--2._ the frequency

dependence is omitted in our investigation.

The final procedure in arriving at the hydrodynamic model is to convert the energy

equation, Eq. (2.9), to a temperature equation, which is ai_h,d by first ,tecomposing energy

E,, into kinetic _'nei'gy which is associate{[ with drift momentum P,, aml thermal energy II;,.

by using the following relation,
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Then, the desired monmnt equations for the twlrodynamic model for plasma density N

(zeroth-order moment) and total thermal energy [V=II_+Wh (second-order moment), cou-

pled to the laser-field amplitude-envelop-function equation, 2_ are derived as follows,

dN

dW

dt

{d -' *}g_ _ R-ee-Ne-%_Ndt -- hS cv

_F2+ _ ('-4_9 + w) + m_ TH:(t) -- B-_NH7 - %_ }V

(2.19)

(2.20)

where g = IA], K = v_Wl/c is the wavenumber of the single-mode laser field, c is the

speed of light in vacuum, and V=wxS is the volume of the active region. In addition,

TTHz = 1/(% + 7eh) is an effective relaxation time, similar to that in the Drude model

for a single-component plasma. The weak energy dependence of both % and %h has been

neglected in our model, so a constant relaxation time has been used in this paper. Carrier-LO

phonon interactions, dw t-7i- ¢-LO' are treated microscopically and details are given elsewhere. 2r

Rather than solving the above set of equations for {$,N,W} with the plasma temperature

T as a dummy variable, it is more convenient to work with the temperature and numerically

solve for {g,N,T}. A transformation is introduced below, which is equivalent to a similar

manipulation, _6 based on the chain rule and the functional relationship, W=W(N, T),

--d-[- \ ON × -7i-] \ OT ]-- '

where 0I['/0N and OIV/OT are calculated using the assumed quasi-equilibrium Fermi-Dirac

distribution functions for electrons and holes.

III. NUMERICAL RESULTS AND DISCUSSIONS

ht this co,ltril)lttit)n, an 8 rim. GaAs/Alo.:+Gao.rAS single (tuantttm w<,ll structure is stu<l-

i('([. ()tht,r than those mat(,ri;tl I)aram('ters, whi<'h can t)(., ('asilv found in literature an<l not
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listeclhere,weusethe parametersin Table I. Throughout this study, weassume,exceptwhen

specifiedotherwise,a fixed lattice temperature of 295 K and photon energy, h_, of 1.4 e V,

which roughly corresponds to the gain peak photon energy. In addition, continuous-wave

(CW) THz fie.ld of the fl)rm, Fcu._(t) = A'rH: sin (27ruTu,t - ¢o), is asslmwd. The focus of

this paper is on long-time behavior of the semiconductor laser under such CW terahertz

field. The transient response and the effects of pulsing terahertz field will be considered in

a forthcoming paper.

As we pointed out earlier, the effects of THF/HFF on semiconductor laser modulation

have been studied using a linear gain model, a,5 According to the linear theory, a deeper

modulation can always be achieved through further increase of THF/HHF amplitude. Since

certain level of depth is required in application, it is important to know at what den-

sity/temperature level, the linear gain model will become invalid.

First of all, let us consider the nonlinear effect of application of an intense THz field on

the differential gains induced by density change and temperature change. As understood

from small-signal analysis in direct current-injection modulations, the important bandwidth

parameter, f3aB, is determined partly by the density-induced differential gain. When the

optical gain modulation is realized via plasma heating, it is found that the temperature-

induced differential gain replaces its density counterpart. However, deviation from linearized

model is expected. The optical gain G of the inverted medium, i.e., the EHP, is given as

below,

In Fig. 1 (a) and (b), we plot the density- and temperature-induced differential gains

{OG/ON,OG/OT}, respectiw_ly. It is obvious from the figure that these differential gains

change appreciably within the relevant density and temperature ranges (see Fig. 2 and 3).

Such gain nonlinearities can be understood as follows. Because phase space filling ,,ff(,,.t of

the ti'rmionic nature of electrons and l,)h's, sat.urati(_n in the optical gain sets in as carrier

(l(,nsity in('reas('s, whi('h explains why t,h(, d('nsit,y-in(hwe(l (liff('w/flAal gain OG/OsV is r('(hw('cl
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to zero. Plasmaheating, howew,r, reducesthe phasefilling factor, f,,(/_)+fh(k)- I, and thus

eases the saturation and leads to a slight increase in OG/ON. On the contrary, as plasma

heating reduces the phase filling factor, the temperature-induced differential gain OG/OT,

proportional to the factor, decreases accordingly..-ks carrier density increases, saturation in

the optical gain due to phase space filling suppresses the differential gain too.

Now let us take a look at the asymptotic (long-time) behavior of the system under a CW

THF. According to our extensive simulation in a quite wide range of modulation parameters,

the asymptotic behavior of laser intensity, the EHP density and temperature, and optical

gain are all well characterized as the sum of a zero-frequency (DC) component and a second

harmonic (2urH_ AC) component. Time evolution of these quantities start to deviate from

this simple sinusoidal behavior when DC level of the laser output approaches zero--laser

driven close to switch-off, or when the modulation frequency becomes too low and nearly

resonant with the relaxation oscillation frequency, s This sinusoidal behavior with the second

harmonic oscillation has its origin in the F_H_(t ) term in Eq. (2.20). The time evolution

of laser intensity and carrier density can be found in Ref. 5. To look more closely at the

modulation behavior as THF intensity changes, we plot the DC components (Fig. 2) and

AC components (Fig. 3) of EHP temperature, EHP density, and laser intensity. There are

quite a few features in Figs. 2 and 3 worth noting. First, all the DC components change

with THF intensity linearly. As THF intensity increases, the DC plasma temperature rises

due to heating effect. This temperature rise causes reduction in the optical gain. To tend

to compensate for the loss of the optical gain due to temperature rise and to maintain laser

operation, the. EHP density has to increase to increase gain. This results in a net gain loss

which cause a linear decrease of the laser output power as can be seen in Fig 2 (c). Finally,

at the high level of the THF of our simulation, the gain loss due to the rising temperature

far exceeds the density-induced increase, the net gain t)ecomes comparable to threshold

level and laser output drops to almost zero. The second fi,atmo of Fig. 2 is the frequency

insensitivity _f th,, DC conlpononts. :ks is _;I;vio_ls ['r,m_ tlw figure, the DC compom,nts tl)r
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all fimr freqltencies,0.l, 0.33, 0.66and ITHz fitll on the samestraight lines. This is because

the inw'rse of tile characteristic dynamical time scale in the EHP is at least an order of

magnitude larger than these frequencies,thus the frequencydependenceof the effective

relaxation time 7-wtt:becomesnegligible,ascan be seenin Eq. (2.16).

In contrast to the behavior of the DC components, the AC part showsa sensitive fre-

quency dependence,as shown in Fig. 3. The AC componentsdecreaseas modulation fre-

quency increases.This is a quite important point. Since a minimum modulation depth is

required for application, this result placesan upper limit to the modulation frequency.The

most important feature in the AC componentcurves is the decreaseof the AC components

of density and laserintensity at high field amplitude (Fig. 3 (b) and (c)). While AC temper-

ature showsa linear increasewith THb-'intensity in the entire simulation rangeshownin the

figure, the AC density and laserintensity increaseonly up to a particular THF amplitude

when it reachesthe maxima. Thereafter, the AC density and laser intensity start to drop.

With further increaseof the THF, the modulation depth approacheszero. This is contrary

to the prediction of linear theory.

To explain this behavior,wegobackagain to the quantity of optical gain. The total gain

variation is written as the sum of two terms: AG = AGN + AGT with "-'_N = OG/ON x A¥

and .6/77 = OG/OT × ../_/_/_.Typically in our simulation results, the AC component of density

is in the order of AN = 10Sern -2 (see Fig. 3 (b)), while that of temperature is in the order

of ten degrees (see Fig. 3 (a)). Using the typical number of different{al gain in Fig. 1, we

estimate that AGN < 0.1cm -_ and AGr ,,_ lcm -_. This means that the gain modulation

due to temperature modulation is at least one order of magnitude larger that that clue

to density modulation. This is actually the reason why this modulation scheme can get

around of the interband speed bottleneck, since no appreciable density change is involved.

As a consequence, we ignore the gain change due to density modulation in the following

discussions. We note that the depth of laser output modulation depends on the ability

to nu)(hllate laser gain. [t is thmeforo reasonabh, to ;tssurne that laser rn_lulation depth

is l)rop_wtional 1o the gain nm_luhttion. For it linear variation of gain with temperature,

1'2



OG/OT is constant. With the monotonolls increase of AC temperature component as shown

in Fig. 3 (a), a monotonous increase in AC laser intensity should be expected. The quite

nonlinear behavior shown in Fig..3 (c) indicates that the linear picture is no longer correct.

To look at this issue more quantitatively, we plot in Fig. 4, the temperature-induced

gain change as a flmction of AC temperature component using the linear gain model and

a nonlinear model up to second order in AT. Since AC temperature is proportional to the

THF intensity (Fig...3 (a)), the :r-axis can be also understood as the THF intensity. The

parameters are exactly the same as in Fig. 3 with the reference temperature being 2,95 K. We

see that, with the inclusion of gain nonlinearity, the gain modulation first increase up to a

maximum and then starts to decrease as the nonlinearity starts to kick in. This explains why

the AC laser intensity decreases as seen in Fig. 3 (c). This result has important consequence

for application of this modulation scheme. Instead of simply increasing the THF intensity

to increase modulation depth, a more careful optimization is required to achieve maximum

modulation depth. This is especially important, since the relative modulation depth in this

scheme is quite small very often. An estimate from Figs. 2 and 3 shows that the relative

modulation depth is around 10 -5.

Indeed, maximizing the modulation depth is an important task for the application of

this modulation scheme. From our numerical results presented above, we can point out

several directions to pursue for this maximization. One obvious direction is to decrease the

modulation speed as the modulation depth increases inversely with frec/uency as can be seen

in Fig. 3 (c). In fact, we have not been able to achieve a reasonable modulation depth

for frequency beyond 1 THz with CW THF of a few KV/cm. With carefifl optimization,

this scheme mav achieve decent depth of modulation in the range between a few tens of

gigahertz (GHz) to around 100 GHz. This is still a very appealing bandwidth, given the

fact that the direct current modulation can achieve around 10 GHz. Another direction for

maximization is to optimize the laser operating point, i.e., the operating threshold current

density ,:to. Plott_'_t in Fig. 5 are long-time sirn_thtt_,_t _lynamics o[" the output intensity of

;t Ca:ks QW laser operating art. 77 K and under higher injection lewqs, 1 and 2 A',-l/cm _.
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It is +:l+,arly in+ticaw_l that modulation depth incrr, ases with the injection current. As a

result, a decent ,'-,5N relative modulation depth can be achieved at high enough modulating

THF intensity. It should be pointed out that the increase in modulation depth mainly

depends on the injection level instead of the lattice temperature. From our analysis above,

we understand that the temperature-induced gain nonlinearity is the major obstacle for

achieving deep modulation. From Fig. l (b), we see that OG/OT becomes a less sensitive

function of temperature (meaning a smaller gain nonlinearity) as density increases. Increase

of lasing threshold will have the laser operate around larger carrier density and therefore

higher bandwidth. This can be seen in Fig. 4 by comparing the two curves for N=I.0 x

1012crn -2 and N=l.8 x 1012cm -2. Much less severe saturation of gain modulation is seen

for the larger density case. Therefore increase in modulation depth is expected for the

larger density. There is another possibility to maximize the modulation depth. We know

that the gain characteristics depend on material properties and quantum well structures.

By engineering quantum well structures with smaller gain nonlinearity, we may be able to

increase modulation depth. Finally, modulation depth can be increased if pulsed THz field

is used. This and other related issues will be discussed in detail in a forthcoming paper.

IV. CONCLUSIONS

To conclude, we derived a set of moment equations from the microscopic semiconductor

Bloch equations describing a semiconductor quantum well laser in an in-plane THz electric

field. This self-consistent treatment of the lasing and heating processes in the presence of

a heating field allows a better treatment of this system. As a result, we predict the strong

saturation and degradation of modulation depth at relatively small THz intensity level.

This places a severe limit to the bandwidth achievable using this scheme. The saturation

phenomenon is flllly understood using the nonlinear gain model, whi<'h we obtained auto-

matically by starting front the microscopic theory. Basecl on our uncl_,rstanding, we are able

to point, cmt severM strat, egic,s fi)r achieving _lecper mo_htlation. \Vhih, this Iwating sclwme
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[)rovesnot to be viable for frequencybeyond i THz, it providesan attractive alternative at

100 GHz lewq or lower.

The key issue with this scheme that has to be resolved is how to apply tile THF or

HFF to a semiconductor laser. There are two ways to realize this scheme. Adding lateral

electrode to bias the laser structure in the lateral direction provides an easy way as was

suggested in Ref. 3. For demonstration purpose, terahertz wave can be coupled from the

side of the laser structure into the active region. The mathematical treatment presented in

this paper should be applicable for both cases.

Finally, we point out that semiconductor laser driven by a lateral heating field may

have other application, such as switching, HFF detection, and short pulse generation etc.

The detailed discussion of these issues will be beyond the scope of this paper and will be

presented elsewhere.

ACKNOWLEDGMENTS

This work is supported by the Director's Discretionary Fund of the NASA Ames Research

Center under NASA contract NAS2-14303.

APPENDIX: MOMENTUM RELAXATION DUE TO ELECTRON-HOLE

SCATTERINGS

Carrier-carrier collisions occur on the femtosecond time scale at typical lasing plasma

densitv. 24'25 [ntraband and interband scattering rates are comparable. To investigate the

consequences of interband scatterings on momentum relaxation we assume quasiequilibrium

for the electron-hole plasma.

Given that each subt)and is thermalized and described by a drifted Fermi-Dirac distri-

bution f,mction, r_ -- f,_')) (;- /7'(")'"/) ), where ct=e,h., th(, (qectron-hole scattering rat(, can |)e

wtitt('n as ft)lh)ws

t5



°";I_,_._= E -/-,,,,,,(q2_"_ +_-_-,,+_-4-q+_)[..L,/,_,(,-,,._.)(_-4+_) IA,)
_,,,,_o -";4,+,/_- 41(_- ,,_+</].

where a and 2 differ, and t_- is the screened Couh)mb potential. After factorization, the

difference term in the squared brackel contains a factor

(1 exp[
kBT

J) = (1- exp[ _ m° "h J])
kBT

(A2)

where we have used energy- conservation and parabolicity of carrier energy dispersion. Ex-

pansion of the exponent term leads to the conclusion that

8t._h= Ot ]_h _ m-T- mh - k rne rna /

After integrating over k for the scattering terms above according to Eq. (2.11), and

realizing that the following relationship holds under the assumption of quasiequilibrium,

eo = Nhk_,, (a4)

it is straightforward to show that the momentum relaxation due to electron-hole scatterings

can be written in a rate equation form as in Eq. (2.15)

_h-=- _-- _-%hrn_

and the relaxation rate is given by

"Yeh = E

k,k' ,_#0

P_-) (AS)
/Tt h

_t:]5[_(r:) + _(;:' + q-)- _,(%+ ql - _(;')]

(_)f_ (_:'+ q-) (; + - ,,, _.T m,

(A6)

in the leading order of _ -
rrte rtl h •

Finally, we shouht comment on the use of the equality T¢ = Th in deriving Eq. (A3).

Exactly speaking, T_ = Ta should be reached on the same time scale as in Eq. (A5). This

m(,ans that the above (h'.rivation is not self-consistent on time scah, ()f -,/,7h_. Since we finally

(,lintinat(, P,. an(1 Ph adial)ati('ally using gq. (2.16), our tr(,atm(,nt on long time s('ah, is,

h()wever, s(,lf-consist(,nt.
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TABLES

TABLE I. Partial SimulationParameters

F

Bsp

confinement factor

TTHz

injection current

spontaneous emission

coefficient

relaxation time

O.025

0.4 KA/cm 2

4.Ox lO -lo

Cm3/8

0.1 ps

Tph

_7

7nr

h_

photon lifetime

current inj. efficiency

non-radiative recomb.

coefficient

dephasing rate

40 ps

0.5

5 meV
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APPENDIX: FIGURE CAPTIONS

Fig. t: Differential gainsversustemperature at variousdensities. Density-induceddiffer-

ential gain and temperature-induceddifferential gain areplotted in (a) and (b), respectively.

Fig. 2: Dependenceof DC componentsof long-time solutions for plasma temperature

(a), density (b), and laserintensity (c) on THz field intensity at 0.1, 0.aa,0.66,and 1.0 THz.

Fig. 3: Dependence of modulation amplitudes (2urHz component) of plasma temperature

(a), density (b), and laser intensity (c) on THz field intensity at 0.1, 0.aa,0.66,and 1.0 THz.

Fig. 4: Temperature-induced nonlinearity in optical gain. Plotted is the change in gain

due to plasma heating, _ = OG/OT}T r x AT + O=G/OT=}rr x (AT)2/2, vehere reference

temperature T_ is 295 K, at two plasma densities. Dashed-line data only keep the linear

term.

Fig. 5: Long-time behavior of laser output operating at 77 K and under THz field

modulation. Injection current for the dotted curves is 2 KA/cm 2 and 1 KA/cm _ for the

solid curves.
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